

Programming Manual

Lua Standard Application API CLxNX

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 2

Copyrights

The contents of this document are proprietary information of SATO Corporation and/or its subsidiaries in

Japan, the U.S and other countries. No part of this document may be reproduced, copied, translated or

incorporated in any other material in any form or by any means, whether manual, graphic, electronic,

mechanical or otherwise, without the prior written consent of SATO Corporation.

Limitation of Liability

SATO Corporation and/or its subsidiaries in Japan, the U.S and other countries make no representations or

warranties of any kind regarding this material, including, but not limited to, implied warranties of

merchantability and fitness for a particular purpose. SATO Corporation shall not be held responsible for

errors contained herein or any omissions from this material or for any damages, whether direct, indirect,

incidental or consequential, in connection with the furnishing, distribution, performance or use of this

material.

SATO Corporation reserves the right to make changes and/or improvements in this product and document

without notice at any time.

Trademarks

SATO is a registered trademark of SATO Corporation and/or its subsidiaries in Japan, the U.S and other

countries.

Version: STL00249PB1

© Copyright 2018 SATO Corporation.

All rights reserved.

Table of Contents

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 3

Table of Contents

1 Introduction 5

1.1 Functions .. 5
1.2 Pipe Process ... 5
1.3 Named Functions Callbacks ... 5

2 SA reserved names 6
2.1 Namespace ... 6

2.2 SA API variables .. 6
2.3 SA reserved Function names (callbacks) .. 8

2.4 _return .. 19
2.5 _f1 .. 19

2.6 nxt .. 19
2.7 Field:Size.. 21

2.8 SA reserved table name .. 21
3 SA API library 22

3.1 input ... 22

3.2 select .. 23
3.3 key .. 24

3.4 keyRet .. 24
3.5 msg ... 24

3.6 confirm ... 25
3.7 inputCheck ... 25

3.8 split ... 26
3.9 quantity... 26

3.10 menuBase ... 27
3.11 scanner ... 27
3.12 keyboard ... 28

3.13 timeOffset ... 29
3.14 timeChanged... 29

3.15 txt ... 31
3.16 Formatters .. 31

3.17 trim ... 31
3.18 tableSelect .. 32

3.19 tableMatchRow .. 32
3.20 tableMatchRows ... 33

3.21 makeRow.. 34
3.22 displayText ... 34
3.23 checkDate ... 35

3.24 inputDate .. 35
3.25 inputTime ... 35

3.26 displayHTML ... 36
3.27 initUTC .. 37

4 Power fail storage (Pfs) 38

Table of Contents

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 4

5 SA Objects 40

5.1 Menu structure .. 40
SA consists of objects organized in a menu tree. See below. .. 40

5.2 Menu Objects ... 41
5.3 What is an SA object? .. 41

5.4 Methods .. 42
5.5 Movement and customization ... 42

6 System objects 43

6.1 Introduction .. 43
6.2 sa.events ... 43

6.3 sa.conf.callbacks ... 44
6.4 Writing HTML to be displayed in the GUI (browser) ... 44

6.5 The main loop of SA .. 44
7 Migration from TH2 46

7.1 XML (SA contract with AEP Works) ... 46
7.2 H/W Platform differences (STB00011) .. 46

7.3 SA API (SA Standard Library) ... 46
7.4 Menu .. 46
7.5 Mode .. 46

7.6 Menu objects .. 47
7.7 Modify F1 in runtime ... 47

8 Application Notes 47
9 Document 48

9.1 References .. 48
9.2 Revision history .. 48

Introduction

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 5

1
Introduction

1.1 Functions

Lua is extended with the firmware API (STB00011) that controls fundamental properties of the

printer like file system, communication, fonts, barcodes and the printer mechanics. On top of this is

the Standard Application (SA), forming the abstraction, within which the user is performing his

tasks.

This document describes the SA API library that, together with f/w API, can be used to extend SA

with Functions. Functions are executable Lua code that is used to customize the application.

Interaction with other resources like Formats, Tables and Images can be comprehensive and as such

be considered as separate applications that reside in the printer.

A placeholder is a position in the SA environment that can be populated with any Function.

If populated then it provides a callback that can be used to change the default behavior.

1.2 Pipe Process

An example is the data pipe process. Each format field has a data source with predefined behavior

except the source script where any function can be used. The value of any source is processed in 4

more steps with placeholders called prescript, round, formatter and postscript. It is rare that all steps

are populated. The formatter divides the pipe process in two parts where Value becomes a formatted

string called Data.

Example: If source is time then Value is in seconds and can be used for calculation but after the

formatter, when seconds has become a localized form of date, then it is more suitable for printing.

1.3 Named Functions Callbacks

SA is also provided with callbacks that are located in positions where it possible to customize SA.

Such callbacks should not interact with rendering and format data process since they are not

executed during design time in AEP Works. One example is the Start callback that is called after

power up. (See below)

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 6

2
SA reserved names

2.1 Namespace

To avoid interference with SA, customer added code is executed in a separate namespace (i.e. Lua

module) called “safe environment” (se). From se all global (variables and library functions) in SA

can be accessed directly. However if a global variable name is the same as a variable in se then then

that variable will be used. Similar to when a function defines a local variable with the same name as

a global. There are situations when these borders need to be crossed. To access a variable in se use

“se.” as prefix. Global namespace prefix is “_G.” must be used to define names in global space.

Normally all global variables and functions in f/w and SA use “camelCase” notation. This means

that the first letter is lowercase. (Exceptions to this rule are reserved SA API variables listed below.)

To avoid interference it is therefore recommended that user defined names starts with an

uppercase letter. Furthermore it is a good practice to use local variables to avoid pollution and

increase speed.

2.2 SA API variables

SA variables are reserved global names for interface between SA and se environment.

They are used for direct access to actual values from selected Table, selected Format and actual

Field that is executing.

Variable Type Description

Table table Selected or associated table

Row table Selected row in Table with column names as attributes

Rows table Latest selected row in table Rows.<tablename>

Format table Selected or associated format with field names as attributes

Formats table Accessed format Formats.<formatname>

Field table Format field that is interpreted

Value Any Field.value (pipe process)

Data string Field.data (pipe process)

Pfs table Power fail storage

Error string Error in pipe process

Canvas object Current print image

resolver function Present when executed from AEP Works

These variables can be used to access data in scripts.

(For available attributes see STL00255 SA XML CLxNX.doc)

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 7

When a table is accessed a dot notation can be used if the key is an alphanumeric string. Otherwise

brackets must be used. See below

Syntax: Row.<ColumnName> or with brackets Row["<Column Name>"]

If the attribute contains spaces or other delimiting characters then brackets must be used.

Examples:

Table.name refers to the name of the associated table.

Row is the selected row in Table

Row.Price refers to the cell pointed to by selected row and Price column in Table.

Format.name refers to the name of the active format.

Format.Shop.value refers to the actual value of the format field with the name Shop.

Field.dateformat refers to the attribute dateformat in the actual format field.

Rows[“Shoe table”] is the latest selected row in table with name ”Shoe table”.

Formats[“Price Demo”] is the format with the name “Price Demo”.

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 8

2.3 SA reserved Function names (callbacks)

Some Function names are reserved for callbacks that are used for customization. These names are

defined in the (se.) global space.

2.3.1 Start

Start is called after power up and can contain various functions and a priori settings.

Functions (and callbacks) does not need to have a separate file, they can all be defined in Start.

(See cbTranslate, cbWelcome etc. below)

2.3.2 cbMenuFormat

cbMenuFormat is called just as a format-based application has been selected.

cbMenuFormat (tFormat)

Variable Usage

tFormat This is the Lua table that represents the Format.

 This function does not return anything.

Normally used for manipulating the format.

2.3.3 cbMenuTable

cbMenuTable is called just as a table-based application has been selected.

cbMenuTable (tTable)

Variable Usage

tTable This is the Lua table that represents the Table.

 This function does not return anything.

Normally used for manipulating the table.

2.3.4 cbBatchDone

cbBatchDone is called when a print batch is finished

cbBatchDone (sMode,tFormat,nAdd,nDone,nAbort,tChain)

Variable Usage

sMode sMode contains “ONLINE”,”NORMAL” or “COPIES” or “CHAIN”

tFormat This is the Lua table that represents the Format.

nAdd Number of added print jobs.

nDone Number of successful print jobs.

nAbort Number of aborted print jobs.

tChain History when printing Group of Labels. (CHAIN)

 This function does not return anything.

This function can be used to do print logging.

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 9

Table with Group of Labels history:

if tChain then

 for i,v in ipairs(tChain) do

 dprint(v.name, tChain[v.name].add, tChain[v.name].done, tChain[v.name].abort)

 end

end

2.3.5 cbTableDisplay

cbTableDisplay is called before the database rows are displayed and gives an opportunity to design

how the data is displayed.

cbTableDisplay (name, column, rows, searchKey)

Variable Usage

name Table name. (So called friendly name, not the file name)

column Table display column name.

rows Indexed Lua table with one Lua table for each row.

Modify this table to modify what is displayed.

searchKey The key used to find the rows. This parameter is nil if used in older versions. It is nil if

searching in predictive mode.

As table searching returns multiple rows, this parameter, when given, can be used to

remove rows that are not matching.

Ex: Concatenates column 3 and column 1

function(name, column, rows)

 if name=="Shoe table" then

 for i,col in ipairs(rows) do col[3]=col[3].." "..col[1] end

 end

 return rows

end

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 10

2.3.6 Exact match control

When navigating in a table or executing sa.select function the highlighted line is the closest match.

However when scanner is used a close match is not good enough so the default behavior in that case

is that an exact match is required. It can be situations when an exact match is always required (or

never required). This can be defined by cbTableMatch and cbSelectMatch callbacks. cbSelectMatch

cannot be used for indexed list (4th argument to sa.select must be false) which means that it must be

performed by a script since the built in source=”select” always use indexed list.

2.3.7 cbTableMatch

cbTableMatch is used to control how to handle requirements for exact match in Table.

See example below.

Retval=cbTableMatch (table, column, scanner)

Variable Usage

table Selected table

column Column name

scanner false: Scanner not used

table: Scanner used

Retval nil: Default behavior

true: Exact match required

false: Exact match not required

Ex: cbTableMatch

function(table, column, scanner)

if table.name=="Shoe table" and column=="ID" then

 return true -- Exact match required

 end

return nil

end

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 11

2.3.8 cbSelectMatch

cbSelectMatch is used to control how to handle requirements for exact match in sa.select.

See example below.

Retval=cbSelectMatch (format, field, prompt input, text, scanner)

Variable Usage

format Selected format

field Field in format

prompt Prompt used in sa.select

input Text entered in search field

text Text in the selected line

scanner false if scanner not used

table if scanner used

Retval nil: Default behavior

true: Exact match required

false: Exact match not required

Note Indexed list cannot be used.

(4th argument in sa.select must be false)

Ex: cbSelectMatch

function(format, field, prompt, input, text, scanner)

 if format.name=="Price Demo" and field.name=="Marked by" then

 return true -- Exact match required

 end

 return nil

end

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 12

2.3.9 cbTableSelect

Callback cbTableSelect can be used to modify the runtime parameters of a table. This can be used

to hide columns from being shown or to change a columns starting input mode from Alpha-numeric

to numeric input. It can also be used to control what policy decides which item is displayed at top

when entering the table. It happens (is called) just before interacting with the user when selecting

from table.

cbTableSelect(tTable)

Variable Usage

tTable

(input/output)

Contains properties of the selected table. Some:

tTable.name – table name

tTable.column – table with information about all columns indexed by integer

and name.

Set tTable.column[idx].keyformat = "%d" to force start in numeric mode.

Set tTable.column[idx].hidden = true/"true" to prevent a column from being

shown.

Set tTable.column[idx].starttop = false/"false" to start showing item with id 1,

the same way as in 40.00.01.02.

 This callback does not have any return values

2.3.10 cbInput

cbInput is called before sa.input is called. Retval controls weather input shall occur or not.

Retval=cbInput (format, field, prompt, value)

Variable Usage

format Selected format

field Field in format

prompt Prompt (string or table)

value Actual value

Retval true: No Input

nil: Input

Note: sa.scanner(false) will disable the scanner.

 Original state will be restored automatically.

Example: Prompt for value until > 0

function(format, field, prompt, value)

 if format.name=="Price Demo" and field.name=="WAS price" and (tonumber(value) or 0)>0 then

 return true

 end

 return nil

end

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 13

2.3.11 cbSelect

cbSelect is called before sa.select is called. Retval controls weather input shall occur or not.

Retval=cbSelect (format, field, prompt, value)

Variable Usage

format Selected format

field Field in format

prompt Prompt (string)

value Actual value

Retval true: No Input

nil: Input

Example: Select until “Mats is” selected

function(format, field, prompt, value)

 if format.name=="Price Demo" and field.name=="Marked by" and value=="Mats" then

 return true

 end

 return nil

end

2.3.12 cbTableNoMatch

cbTableNoMatch is used to define if it is possible to return from table search without any match

found when EN is pressed.

Retval=cbTableNoMatch (table,input)

Variable Usage

table Selected table

input Input field

Retval true: return

nil: No return

Example: Accept empty return value if the text “Sato” is searched for

function(table,input)

 if table.name=="Shoe table" and input=="Sato" then

 return true

 end

 return nil

end

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 14

2.3.13 cbFormatData

cbFormatData is used to execute pre- and postformat code.

The callback is located before and after the fields are executed.

cbFormatData (format,action,start,bCompleted,sErr)

Variable Usage

format Active format (=Format)

action true: execute all fields. (Once for each batch.)

false: execute only counters and related fields.

start true: pre format

false: post format

bCompleted nil: not supported.

false: format has been aborted (PU,MU or sa.abort)

true: All fields generated successfully.

sErr nil: no script error or not supported.

~nil: Lua script error string.

Note If error in user defined (se.) callback the call looks like this:

cbFormatData({},nil,nil,nil,<error string>)

Usage: if format.name==nil then print(sErr) else <see below> end

Example:

function(format,action,start,bCompleted,sErr)

 if start then

 -- pre-format

 else

 -- post-format

 if sErr then

 -- cbFieldData,cbFormatData or a field script have generated an error

 --print(sErr)

 else

 if bCompleted then

 -- All fields generated successfully

 else

 -- Field generation aborted (by PU,MU or sa.abort)

 end

 end

 end

end

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 15

2.3.14 cbFieldData

cbFieldData is used to execute code before each field is executed.

cbFieldData (format,field,action)

Variable Usage

format Active format (=Format)

field Active field (=Field)

action true: execute all fields. (Once for each batch.)

false: execute only counters and related fields.

Example: Make sure that the field "WAS price" does not use old value after Table selection (Row)

has changed. (field.values[field.prompt] contains previous entry from sa.input.)

function(format, field, action)

 if action

 and format.name=="Price Demo"

 and field.name=="WAS price"

 and field.ID~=Row.id then

 field.ID=Row.id

 field.values[field.prompt]=nil

 field.value=nil

 end

end

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 16

2.3.15 cbSelectSort

cbSelectSort is used to change the sort function when selecting from sorted lists.

retval=cbSelectSort(id)

Variable Usage

id Must be of type string.

“FMT” is reserved for select format menu

“TBL” is reserved for select table menu

retval The sort function for table.sort (see Ref.[3])

Note The sort function can also be directly

provided. See sa.select and sa.tableSelect

Below function is included in SA. It handles sorting of strings with leading numbers. Format

2.PriceDemo will be sorted before 10.PriceDemo. To use it, just put the string “FMT” or “TBL” as

the 6th argument to sa.select.

function cbSelectSort(id)

 --* Execute once

 if not(cbSelectSortTbl) then

 --* return number or string

 local function Type(s)

 s=type(s)=="string" and s or ""

 local i,j=string.find(s,"^%d+")

 local n=i and tonumber(s:sub(i,j)) or s

 return n

 end

 --* sort function based on type

 local function Sort(a,b)

 a,b=Type(a),Type(b)

 if type(a)==type(b) then

 return a<b

 else

 return string.lower(tostring(a))<string.lower(tostring(b))

 end

 end

 --* put id in table

 cbSelectSortTbl={FMT=Sort,TBL=Sort}

 end

--* return sort functions based on id

 return cbSelectSortTbl[id]

end

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 17

2.3.16 cbTranslate

cbTranslate is a callback that is called when the language changes and makes it possible to provide

translations to the application. Example placed in Start script translates the name of the table and

the title of side menu (F1).

--* Table with translations. For language codes see ISO 639-1.

--* ["<original text>"]={<language code>="<text>",<language code>="<text>",<etc>},

local tr={

 ["QSR Demo"]={sv="Välj Maträtt", en_US="Select Dish"},

 ["sa.menu"]={sv="F1 "..sa.txt("sa.menu"),en_US="F1 Menu"},

}

function cbTranslate()

 local l=sa.language() or "en_US"

 for k,v in pairs(tr) do translate[k]=v[l] end

end

2.3.17 cbWelcome

cbWelcome is used to change the default welcome-text at startup.

--* Welcome message at startup

function cbWelcome()

 sa.msg({"Don’t Worry","Be Happy"},nil,1)

end

2.3.18 cbSdbTitle

When selecting in table, cbSdbTitle is used for providing a more informative title than the table

name. The title is automatically translated. The function must return a string.

function cbSdbTitle(title,tableName)

 if tableName=="Shoe table" then

 return "Select Shoe Name"

 else

 return tableName

 end

end

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 18

2.3.19 cbCustomCommand

cbCustomCommand is used for providing the Android AEP application with an additional

command string to send to the printer. It will be sent once for each print job, after all other fields,

just before <Q1>.

retval=cbCustomCommand()

Variable Usage

retval The command string to be sent to the printer,

as a Lua string.

Note cbCustomCommand shouldn’t have any side

effects, as that would give different results in

the Android AEP application compared to

other platforms.

Example: To put an additional text field at position (100, 100) when printing on an SBPL printer,

you could use the following function.

function()

 return “\027H100\027V100\027XUSome text”

end

2.3.20 cbLabelObject

cbLabelObject can be used to add extra render object(s) to a label before printing. This function is

called in SA before the label is rendered.

cbCustomCommand(format, label)

Variable Usage

format The format in table format.

label The label object.

Example: Print format parameters to console and add a circle object to the label

function(fmt, lbl)

 if resolver then return end -- for breaking loops/detecting in AEPWorks

 -- Print format

 print("json.encode(fmt)", json.encode(fmt))

 io.flush()

 -- Add circle to label

 local c = circleObject.new(200,200,100,4)

 lbl:add(c)

end

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 19

2.3.21 cbAtExit

cbAtExit is a callback that is called just before SA exits. It provides the opportunity, for a few

seconds, to run some code before SA exits. After a few seconds SA is forcefully killed to make sure

that SA really exits.

2.4 _return

With _return object callback it is possible to take control over what object is to be executed next.

Add to each object

Retval=o._return(o,n)

Variable Usage

o Current object

n Default next object

Retval The callback returns the object where execution will continue

nil: Default next object will be used

Note: This is an advanced operation that will be further explained in Application

Notes STL00266.

Ex. sa.objects.quantity._return=function(o,n) <add code> return n end

2.5 _f1

This is an object method to implement context sensitive side menu. If the object

o. _f1 is present then o._f1 will replace side menu (sa.f1) temporary.

Note: This is an advanced operation that will be further explained in Application Notes STL00266.

2.6 nxt

nxt (se.nxt) is not a callback, it is the default function for format navigation.

A Format must be loaded and it sets which field to execute next after finishing current field.

Retval=nxt(field)

Variable Usage

Field For relative position use “+” or “-“ immediately before the index “-2”

For absolute position use a string or number “2” or 2

Field names can be used “Shoe name”

If false (boolean) then format execution is ended after current field.

Illegal values will be dismissed.

Retval If field is nil nxt returns current field (Format.index)

Note1: The table Format.renderdata contains the result for all fields.

Note2: #Format is the number of fields in format.

SA reserved namesreserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 20

Note3: This is an advanced operation that will be further explained in

 Application Notes STL00266.

SA reserved names

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 21

2.7 Field:Size

Size is a field method that is used to calculate its size without rendering on label.

For return values see STB00011 fieldSize()

2.8 SA reserved table name

The table name Translate is reserved for translation file

The first column is the used tag and the rest is a language code.

This is a way to change existing or merge new words into the internal (SA) translation table.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 22

3
SA API library
SA API library functions are defined in a separate namespace (sa.)

3.1 input

sa.input is designed for input of any type. It keeps track of latest input value.

Retval1, Retval2, Retval3 = sa.input (prompt, startval, inputformat, designvalue,new)

Variable Usage

prompt Title. (Translated internally.)

startvalue This value is displayed first time after format selection. Next time previous entered

value will be used.

inputformat %length[.decimals] s|u|d|n|f (controls the keyboard mode)

s=string, u=unsigned integer, d=signed integer, n=unsigned float, f=signed float

(0 or empty length means infinite length)

(0 or empty decimals on a float defaults to 2)

Default is %s

designvalue For use in design time (AEP Works)

new true : Don't use previous value as default

Retval1 nil if key was an escape key (PU or MU)

input value (string) if key was "EN"

Retval2 true : Scanner was used

nil : Scanner was not used

Retval3 true : Keyboard was used

nil : Keyboard was not used

Note 1: Scanner input is enabled inside this function. To disable scanner, see cbInput

Note 2: Keyboard detection requires using sa.keyboardMatch() and sa.keyboard()

Ex: sa.input ("WAS Price","","%3.2n","999.99")

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 23

3.2 select

sa.select is designed for list selection. It keeps track of latest input value.

Retval1, Retval2, Retval3, Retval4, Retval5 = sa.select (prompt, table, index, indexed,plain,sort)

Variable Usage

prompt String to be displayed in first line. Translated internally.

table Table or comma-separated list

index Start index in list (default 1)

indexed false. Use sorted list

true. Use index (default)

plain false. Accept value based on cbSelectMatch

true. Accept any value.

sort String. Call cbSelectSort to find sort function

Function. Sort function according to table.sort (see Ref.[3])

nil. Default sort function

Retval1 Selected item

Retval2 Selected index

Retval3 Input text

Retval4 false: Scanner was not used

true: Scanner was used

Retval5 false: External keyboard was not used

true: External keyboard was used

Note 2: Keyboard detection requires using sa.keyboardMatch() and sa.keyboard()

Example:

Left: sa.select ("Marked by:",{"Jane","Kevin","David","Pamela",”Kalle”},nil,false)

Right: sa.select ("Marked by:",{"Jane","Kevin","David","Pamela",”Kalle”})

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 24

3.3 key

sa.key(key) returns and manipulates key

key Usage

nil Returns last key

string Set last key to string

true Returns last key after object change

This is a copy of key value when object changed. The value

will remain until clear (false below) or set (string above).

false Clear both above

Note: Formats are executed within the same object (formatData).

Ex. Check if last key was Enter

if sa.key()==”EN” then …

3.4 keyRet

sa.keyRet returns true if the last key was "PU" or "MU"(long press “PU”)

Ex: Y=sa.input(txt("YEAR"),Y,"%4n") or Y

 if sa.keyRet() then return end

3.5 msg

sa.msg is used to display a message.

sa.msg (text,nil,timeout)

Variable Usage

text String or table (more than one row).

nil nil (not used by CLNX)

timeout Time to stay in display in seconds

If nil then infinite

Default text is "Invalid".

Translated internally.

To leave press confirm button (F2).

Ex: sa.msg({"Hello","World!"})

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 25

3.6 confirm

sa.confirm is used to inform the user that a decision must be confirmed.

Retval1,Retval2 = sa.confirm(text,options)

Variable Usage

text String

options Table (list of options)

Retval1 true if confirm (F2), false if reject (F1)

Retval2 Selected option or nil

Note: Translated internally.

Default text is "Delete?".

Ex: local R1,R2=sa.confirm("Done?",{"Print box total","Print grand total"})

3.7 inputCheck

sa.inputCheck is designed for use in Formats and check validity of input (barcodes only)

Retval = sa.inputCheck(data, fieldtype, barcode)

Variable Usage

data String to check

fieldtype Default is actual fieldtype

barcode Default is actual barcode(type)

Retval Boolean

Ex:

print(sa.inputCheck("1234567890123","barcode","ean13"))  false

print(sa.inputCheck("1234567890128","barcode","ean13"))  true

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 26

3.8 split

sa.split will split a string into a table. Pattern can be used.

Retval = sa.split(string, separator, patternmatch)

Variable Usage

string String with separators

separator String indicating split position. Default is ","

patternmatch Boolean, false or nil will disable pattern matching.

Ex. If patternmatch is true then the separator "%a+"

will split on every group of letters in string.

Retval Table

3.9 quantity

sa.quantity set the number of labels to print and overrides the QUANTITY input.

It can also be used to configure other QUANTITY-related behaviors by passing in a table with

arguments, e.g:
{

 list={1,2,5},

 loopQty=1,

previewQty=2,

 qty=1,

returnScreen="screenName", -- screen based printers only

timeChanged=true, -- update time fields before printing

}

The table arguments passed in will update the options. Individual items are cleared by setting false.

previewQty=2 is used as preset QTY of 2 for preview screens. loopQty=1 will enable a confirm

dialog after print to enable printing an additional new item quickly. list={1,2,5} will show a list

where the user can select between printing 1,2 or 5 labels.

previewQty and qty are automatically reset to nil after the print cycle.

sa.quantity(labels|opts)

sa.quantity(false)

sa.quantity(0)

quantity,options=sa.quantity()

option=sa.quantity(nil, "option”)

The new implementation is not fully backwards compatible with the previous behavior if the labels

argument is a table it will be interpreted as an opts argument. Otherwise as before, 0 can be set to

print no labels. It will also skip the loopQty. Setting to false, will clear it. Passing other types of

arguments to sa.quantity() to avoid printing labels is not recommended.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 27

3.10 menuBase

sa.menuBase (abort)

Variable Usage

abort true : Must be set to a true value

Note Menu Base is first child in menu (sa.menu[1]) object

3.11 scanner

sa.scanner is used to enable/disable scanner input or read actual state

Retval=sa.scanner()

sa.scanner(state)

When called without arguments the current state is returned.

Variable Usage

state true: enable

false: disable

nil: Retval

3.11.1 scannerMatch([pattern])

sa.scannerMatch() is used to control which USB keyboards/scanners that SA should control. The

default behavior is to control devices that have "scanner" in their name.

Retval=sa.scannerMatch()

Return the current matching pattern (default "scanner") for USB-scanner.

sa.scannerMatch(pattern)

Variable Usage

Pattern A string or a table with strings that must be found somewhere in the device name. ""

matches all USB keyboards.

3.11.2 scannerConf(conf)

sa.scannerConf() can be used to control some behaviors of how scanners are handled. There are two

builtin configurations. For hid scanners (see sa.scannerMatch()), and for Bluetooth scanners, but

more ports can act as scanners by adding them to conf when they exist in system.ahd().

{

 hid={ timeout=0.1, cp="UTF-8", fs=13, enable=true},

 Bluetooth = { timeout=2, cp="UTF-8", fs="\r\n", fn=lua_function, enable=true }

}

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 28

For hid only timeout can be modified.

The fn-parameter is preloaded with a builtin lua function that searches for the field separator fs,

and then it converts it to internal scanner data using sa.dataConv(). The lua_function can be

overloaded. The prototype is

function (port,t)

-- port: is the port name from autohuntd.

-- t[1]:inout argument is the data from the scanner (complete/incomplete)

-- t[2]:out argument is the data after conversion

end

When the function is called, only t[1] exists. When function deems the scan packet as completed,

it sets the converted packet data in t[2]. The data in t[1] that produced t[2], should be removed

from t[1]. The data format in t[2] must match the format from sa.dataConv().

Example to add TCP Port1 as scanner (ahd-port name 1024)
local conf=sa.scannerConf()

conf["1024"]=conf.Bluetooth -- use the Bluetooth conf table for 1024

conf.Bluetooth=nil -- to make sure not to modify Bluetooth

sa.scannerMatch(conf) -- activate it

That can be used to emulate scanner behavior by connecting to port 1024.

Retval=sa.scannerConf()

Return the current configuration. Use sa.scannerConf(conf) to update.

sa.scannerConf(conf)

Updates the configuration with the data in conf. To delete a port, set it to false. NB! The hid and

Bluetooth port configurations cannot be deleted.

3.11.3 dataConv(port,data)

sa.dataConv() is a utility function to convert the scanner data into the internal format. It is used by

the builtin function to produce t[2]. The port-parameter looks up the from codepage cp to "UTF-8",

and then converts the string data into the internal format and returns it as a string.

3.12 keyboard

sa.keyboard is used to enable/disable input from USB keyboard or to read actual state

Retval=sa.keyboard()

sa.keyboard(state)

When called without arguments the current state is returned.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 29

Variable Usage

state true: enable

false: disable

nil: Retval

3.12.1 keyboardMatch([pattern])

sa.keyboardMatch() is used to control which USB keyboards that SA should control. It is called

with the unclaimed left-overs after sa.scannerMatch(). The default behavior is to control the

keyboard in the browser.

Retval=sa.keyboardMatch()

Return the current matching pattern for USB-keyboard.

sa.keyboardMatch(pattern)

Variable Usage

pattern A string or a table with strings that must be found somewhere in the device name. ""

matches the remaining USB keyboards not claimed by sa.scannerMatch()

3.13 timeOffset

sa.timeOffset() is the value in seconds that will be added to RTC when a time-source is requested.

If flag is omitted, nil or true timeChanged flag will be set to true. Retval is actual timeOffset.

Retval=sa.timeOffset(seconds,flag)

Ex. Make time fields in all formats return RTC+1h

sa.timeOffset(3600)

3.14 timeChanged

sa.timeChanged is a flag that trigger a recalculation of time fields (and fields that copy from them)

before printing. The flag is cleared.

Ex. Recalculate time fields next printing

sa.timeChanged=true

Note: When Quantity is requested then the format is ready for printing. If printing does not occur

within 60 sec. all time fields will be recalculated automatically.

Note: sa.quantity({timeChanged=true}) can done in Start, to set sa.timeChanged at each Quantity-

prompt.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 30

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 31

3.15 txt

Translates text or table according to internal translation files using configured language.

Retval=sa.txt (text)

Variable Usage

Text String or table to be translated.

(Case sensitive)

Retval Translated text or table

Search order:

1. Use SA translation table (table:translate)

2. Use f/w translation table (function:config.xlate see STB00011)

3. Use the tag.

Note: sa.language() returns the configured language code. (ISO 639-1)

3.16 Formatters

Formatters are used in data pipe process to format data according to type and locale but are also

usable in other places.

Name sa API Base Description

Default sa.printf(format,value) string.format(format,value) Lua ref.

Date&Time sa.ldate(format,value system.ldateFormat(format,value) STB00011

Currency(sign) sa.lmon(value) system.lmonFormat(value) STB00011

Currency(text) sa.limon(value) system.limonFormat(value) STB00011

Number sa.lnum(value) system.lnumFormat(value) STB00011

Ex.

sa.limon (123)  USD 123.00

sa.ldate ("%x", os.time())  4/23/2016

sa.printf("%03xH",100)  064H

3.17 trim

sa.trim trims string whitespace (beginning and end)

Retval=sa.trim(string)

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 32

3.18 tableSelect

sa.tableSelect is based on sa.select with the list provided from a database table.

Retval1, Retval2, Retval3, Retval4=sa.tableSelect(prompt,column,tableName,text,indexed,sort)

Variable Usage

prompt String to be displayed in first line.

(Search field must also fit into the first line. See below)

Translated internally.

column Column name in database table

tableName Name of the database table

Text Default selection

indexed false. Use sorted list and search field

true. Use index (default)

 If # of items > 9 then search field will appear.

Sort string. Call cbSelectSort to find sort function

function. Use function to sort list

nil. Default sort function

Retval1 Selected text

Retval2 Selected index

Retval3 Input text

Retval4 false: Scanner was not used

table: Scanner was used

Note 1: Indexed view will use numeric input mode,

 Not Indexed will suggest numeric if any item starts with a number

Note 2: List items are limited to 10000

Note 4: The table sa.pk[<tablename>] will contain the latest selected primary key

Note 5: Callback cbSelect is applicable

3.19 tableMatchRow

sa.tableMatchRow is used to query for one and only one match in a sdb table

row=sa.tableMatchRow(t,query,column)

Variable Usage

T Loaded table or table name

Query Query for column

column For loaded table default column is t.display (column=nil)

Column name or number

If column has legal value it is used otherwise default is 1

Row nil: not found

table: array (indexed) and column names with value

Note: See STL00266 and WSP01141

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 33

3.20 tableMatchRows

sa.tableMatchRows is used to query a sdb table

rows=sa.tableMatchRows(t,query,column,n,offset)

Variable Usage

T Loaded table or table name

Query Query for column

column Column by name or number (numeric)

Default column is t.display or 1

N Max number of rows to fetch

Not a number: max 1000

Offset Offset in selection

Default: 0

Rows nil: table not found

table: array of rows and rows.columns and rows.info (notes below)

Note1: rows.columns is a table with xref for columns with

index=name and name=index

(Used by sa.makeRow below)

Note2: rows.info contains info about selected table

lastMatch offset to last match in selection

columnIndex index for used column

sort how the data is sorted

query input search string

column name of used column

format format for data

rows delivered number of rows

maxrows total number of rows in table

For further details see STB00011 f/w API spec

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 34

3.21 makeRow

sa.makeRow creates the global Row variable that is used for table selection

row=sa.makeRow(rows,columns,n)

Variable Usage

Rows table: if rows[n] is a table then use rows[n]

not table: return empty table

columns table: xref, see note for sa.tableMatchRows

nil: use rows.columns

N See above

Row Return value (same as Row, created in function)

3.22 displayText

sa.displayText is used to display and vertical scroll a text on several lines.

sa.displayText (title,text)

Variable Usage

Title The title in display

Text Text body with newline ("\n") as line separator.

Note: Not compatible with displayText for TH2 printer

sa.displayText("TEXT","This is first line\nand this is second

line\nthird\netc.\netc.\netc\netc.\netc.\netc.\netc.\nlast line")

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 35

3.23 checkDate

sa.checkDate checks legal dates between 1970-01-02 00:00:00 – 2037-12-31 23:59:59

Retval=checkDate(Year,Month,Day,Hour,Minute,Second)

Variable Usage

Year 1970-2037 Default 1970

If 00-37 then 2000-2037 is assumed

Month Default 1

Day Default 1

Hour Default 0

Minute Default 0

Second Default 0

Retval Boolean

Example:

print (sa.checkDate(2015,2,29))  false

print (sa.checkDate(2016,2,29))  true

3.24 inputDate

Input dates between 1970-01-02 – 2037-12-31

Retval=sa.inputDate(Year,Month,Day)

Variable Usage

Year Default now

If 000-037 then 2000-2037 is assumed

Month Default now

Day Default now

Retval The date expressed as seconds from epoch (1970-01-01

00:00:00)

Example:

print (sa.ldate ("%Y-%m-%d", sa.inputDate()))  2009-10-21

3.25 inputTime

Input hours and minutes

Retval=sa.inputTime(Hours,Minutes)

Variable Usage

Hours Default now

Minutes Default now

Retval Hours and minutes expressed as seconds

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 36

3.26 displayHTML

Use HTML tags to format display content.

Retval1,Retval2=sa.displayHTML(content,prompt)

Variable Usage

content string: HTML string

table: (for advanced use)

prompt The title

If exists it will override prompt tag if content is a table

Retval1 Key pressed

Retval2 Return table (for advanced use)

Example left:

 r=sa.displayHTML("<!DOCTYPE html><html><head><title>Page Title</title></head>

 <body> <h1>This is a Heading</h1><p>This is 1 paragraph.</p><p>This is 2 paragraph.</p>

 <p>This is 3 paragraph.</p> </body></html>","Text")

Example right:

local I=""

r=sa.displayHTML(I,"Image")

(For base64 encoding: https://www.base64-image.de)

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 37

3.27 initUTC

This function is targeted for PW2NX, to synchronize the system clock with the UTC time. It

requires WLAN to work. The time zone can be specified using settings, or by passing it as

argument, e.g. sa.initUTC({zoneinfo="Europe/Gothenburg"})

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 38

4
Power fail storage (Pfs)
Pfs is an easy way to store data nonvolatile in flash, however all data is written each time any data

is modified. This means that it is intended for small amount of data like totals, counters and queues.

For logging purposes, file io with append is recommended instead. Note: Intensive writing to flash

is not recommended. A solution with ram should be considered.

Pfs (or se.Pfs in global space) is a repository where access to the variable interacts with the file

system to ensure that the information is non-volatile. The implementation is a so called funcTable, a

table that also have functions behavior.

Writing and reading from Pfs is straight forward table syntax

Pfs["A"]=25 or Pfs.A=25

Pfs.A=Pfs.A + 10

Any type of data can be stored

Pfs.B = {"One", "Two", "Three", n=3}

print (Pfs.B[2])  "Two"

print (Pfs.B.n)  3

Table methods for the Pfs table cannot be indexed; they must be transferred as argument to the

function. See below. For indexed Pfs tables (like Pfs.B above) standard Lua is used. However in

this case, a write to file must be triggered separately. See Note below.

Method Usage

nil Pfs() (clear all)

Retval=Pfs("#")

copy Retval=Pfs("copy")

insert Pfs("insert,"[pos,] value)

remove Pfs("remove"[, pos])

sort Pfs("sort"[,comp])

getn Retval=Pfs("getn")

maxn Retval=Pfs("maxn")

concat Retval=Pfs("concat"[, sep[, i[, j]]])

pairs for i,v in Pfs("pairs") do … end

ipairs for i,v in Pfs("ipairs") do … end

The storage is located in the file /ffs/apps/sa/pfs and a removal of that file will clear all data.

Note: Pfs use the index metamethods. This means that above example is not the same as

Pfs.B={} Pfs.B[1]=”One” Pfs.B[2]=”Two” Pfs.B[3]=”Three”

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 39

since Pfs __index metamethod is not triggered. The data will therefore not be stored to file

immediately. However any instruction that trigger __index for Pfs will fix the problem.

For example: Pfs.B=Pfs.B

For more details about table methods see Lua Reference Manual.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 40

5
SA Objects
SA objects are based on a generic object definition. The name of basic methods and attributes starts

with underscore while SA specific methods and attributes start with lowercase.

Developers can add their own methods and attributes to objects and use the same name convention

that is used in SA namely start with an uppercase letter.

5.1 Menu structure

SA consists of objects organized in a menu tree. See below.

Main menu is not shown because there is only one child, the object app.

If another child is added to main then a selection will be prompted.

In object app selectable tables and formats are combined into one list for selection.

Object app has 2 children formatTable and tableFormat that are called dependent of it was a format-

or table based application that was selected.

sa.object.app.mode = 1/2 format/table mode

sa.object.app.name = selected format/table name

Both ways ends up in formatData where the format is executed. Finally quantity is called where

number of labels in batch is requested and printing occurs.

main

.app

..formatTable

...formatData

....quantity

..tableFormat

...formatData

....quantity

Meny key (F1) has 4 children that are imported from file fnc.

f1

.fnc.print

.fnc.profile

.fnc.timeoffset

.fnc.info

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 41

5.2 Menu Objects

Above tree view shows that the menu consists of 6 object.

Name Purpose

main Root object. If it only has one child, call that child.

app Start object.

Define the globals Format or Table dependent on format/table based application.

formatTable Define Row in Table.

(Format based application. Format is selected and defines Table)

tableFormat Find Format and define Row.

(Table based application. Table is selected and defines Format)

formatData Execute Format

quantity Input quantity and Print batch

5.3 What is an SA object?

SA objects are Lua tables (functable) with a few defined attributes and methods.

 _name, _title and _call are always defined by the creator. If _call is not defined then the default

method _menu is called and the objects children are shown (_title) in display for selection. Object

f1 is an example. Indexed attributes (1, 2, 3..) are reserved for children.

To create a SA object the function sa.new is used with name, title and function as argument.

sa:new("MyObj", "My First Object", MyFunction) -- name must be unique

The new object is returned and can also be found in sa.objects.MyObj.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 42

5.4 Methods

When a SA object is created it also inherits methods.

5.4.1 _insert, _remove

These methods works in the same way as Lua table.insert and table.remove.

How to add an object to f1 menu in first position.

Create the function.

function MyFunction() sa.msg("My Testing",nul,1) end

Create the object.

local o= sa:new("MyObj", "My First SA Object", MyFunction)

Insert object in f1 menu, first position. (sa.f1 points to sa.objects.f1)

sa.f1:_insert(o, 1) -- put an object first in f1

How to remove the same object from f1. (The object still remains in sa.objects)

sa.f1:_remove(sa.f1[1])

See also: AEP Hub - APP00005 Add2F1 function (TH2 compatible).

5.5 Movement and customization

For minor customization, it is simple to override the _call function.

One example is to take control over the quantity object. The function asks for the number of labels

to print and then print them.

local qc=sa.objects.quantity._call -- save a pointer to original function

function sa.objects.quantity._call(…) -- create the new function

 --* add some code

 local retval=qc(…) --* call the original function and save the result

 --* add some more code

 return retval --* return retval (or another object to execute next)

end

When an object returns nil then SA will check the stack trace and move to the topmost object,

however if the object returns a pointer to another object then execution will continue in that object.

Where to move next is prepared by inserting objects as children. By replacing these children it is

possible to customize the execution path. (For existing children see above Menu structure.)

It is also possible to take full control by adding the callback _return(a,b) to an object. See above.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 43

6
System objects

6.1 Introduction

It is possible to access system objects to perform filtering of in-data and out-data, and to hook

actions to events. This section describes how to access those objects. As SA is a single-threaded

application, it is necessary to write the handles so that they run their code swiftly and then return, to

prevent a sluggish system.

6.2 sa.events

This is a system events object containing the data handles (file descriptors, fd). SA registers these

named I/O-channels:

"online:io" - this is the device handle of type deviceObject to read from to filter in-data. This is

also the handle to write responses to.

"online:out" - this is the device handle of type deviceObject to read the responses from the parser

(e.g. SBPL). To send it back to the host, use the "online:io"-handle.

"online:in" - this is the device handle of type deviceObject to write the filtered in-data to. It will

then be parsed by the current emulation parser.

"events" - this is the event handle for the system events enumerated in the text-file

"/rom/autoload/evt.lua". This is used with system.callbacks(), see next section.

"gui" - this is the gui handle for the CLxNX GUI.

"scanner" - this is the device handle name used for scanner. NB! There may be many, and they all

have the same name. The device handles are of type deviceObject.

Please note that sa.events:init() will be issued when a scanner is plugged in/out and after

errors, and that will remove your changes if you don't design for it. See the below example for how

to handle init and how to run a filter function in front of the default.

local _init = sa.events.init

sa.events.init=function(t)

 _init(t)

 -- configure my changes

 local origFn

 local fd=sa.events:get("online:io")

 origFn = sa.events:replace(fd,fd,function(fd) print("this runs before origFn")

return origFn(fd) end)

end

Read more about deviceObject, system.ahd(), system.newEvents(), gui in STB00011.

Another source of information is WSP01126 in AEP Hub.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 44

6.3 sa.conf.callbacks

This is the system callbacks object used by SA to hook into the notification events. Read more

about system.callbacks() in STB00011. SA listens to the aep,gui,ntagi2c and statusd event

groups. To get a listing of those events, see the contents of /rom/autoload/evt.lua. To refer to an

event in statusd, e.g. status, the design pattern is require("autoload.evt").statusd.status.

6.4 Writing HTML to be displayed in the GUI (browser)

For scripts such as AEPService/Upgrade that displays a progress bar, CLxNX-specific API:s can be

used. This is described in STB00011, but the kickstart guide is here.

1. Create your own GUI connection

myGui = require("autoload.gui").new()

myGui:run(sa.conf.callbacks)

2. Write your own HTML message

myGui:show({type="html",content="Hello world"})

3. Get response from the message

local r = myGui:receive()

dprint("I got this response:",json.encode(r))

The input functions used by SA (sa.input(...), sa.select(...), ...) are implemented with the

message types described in STB00011.

It can also be done like this:

local myGui=sa.events:get("gui")

myGui:show({type="html",content="Hello world"})

local r = myGui:receive()

dprint("I got this response:",json.encode(r))

6.5 The main loop of SA

As explained in STB00011, the CLxNX printer's LCD-process operates in AEP-mode when SA

requests user input, and the gui handle switches to the other operating states depending on the

operating conditions. The main loop can be described with these lines:

while true do

 -- part 1

 sa.events:resume(gui)

 while (not printing via AEP) do

 sa.events:run()

 end

 sa.events:suspend(gui)

 -- part 2

 while (printing via AEP) do

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 45

 sa.conf.callbacks.eventWait() -- symbolic code

 end

end

When the user inputs the data requested by the format including the QTY, part 1 runs. When the

user is done inputting the QTY, part 2 takes on and the printer runs there until finished.

The typical filtering application runs only in part 1, and it will react to events (notification events,

data input events) happening on the file descriptors in the sa.events's objects table.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 46

7

Migration from TH2

7.1 XML (SA contract with AEP Works)

Defined in STB00102 for TH2 and in STL00255 for CLNX is compatible. It means that formats,

tables, functions and fnc (F1) are compatible on a XML-level. Fnc for TH2 have more items and

some of them are not compatible.

7.2 H/W Platform differences (STB00011)

The main difference comes out of modified keyboard and display.

display.*, keyboard.* does not exist and its handling is not performed by SA.

7.3 SA API (SA Standard Library)

Is mostly compatible. Some exceptions:

sa.confirm is based on a separate gui and has more options and special keys in CLNX.

sa.displayText was more advanced designed in TH2 with both keyboard, timeout and display

options. CLNX implementation scroll text that is preformatted with newlines.

Argument order is different. TH2 did not have a title and separator could be defined.

sa.input input position always the same. In TH2 the prompt could use more than one line and

“push” the input position down. In CLNX the prompt is on one separate line and input on another

separate line. (Soft keyboard needs space.)

7.4 Menu

Settings for Application and Printer removed. (Edit, F1, MODE). Printer settings are accessed in

system menu.

7.5 Mode

Mode removed from menu (for simplicity).

Format/Table mode could earlier hide incorrect associations between formats and tables.

Now all selectable tables and formats (applications) are shown in one list.

Change associations in AEP Works to get rid of this problem.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 47

7.6 Menu objects

The menu is built on other objects and overriding of internal functions like menu.selectFmt,

menu.selectTbl is not compatible.

7.7 Modify F1 in runtime

TH2 methods not compatible. How to do is described in this document, see 2.5 and 5.4.1 _insert,

_remove.

See also: AEP Hub - APP00005, Add2F1 function (TH2 compatible).

8
Application Notes
Application Notes for TH2 (STB00257) are still applicable.

Application Notes for CLxNX are found in STL00266.

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 48

9
Document

9.1 References

[1] Lua Technical Firmware API, STB00011.

[2] Standard Application XML, STL00255.

[3] Lua Reference Manual

9.2 Revision history

Revision Name Comment Date
PA1 Staffan Gribel First draft. Scanner not implemented yet. Text in Italic. 2015-09-08

PA2 Mats Hedberg Changed front page 2015-09-17

PA3 Staffan Gribel Added inputDate, inputTime, dateCheck, cbMenuTable, nxt

and displayText.

2015-09-25

PA4 Staffan Gribel Scanner is implemented 2015-10-02

PA5 Staffan Gribel cbPredict removed, Field:Size added, objects more explaned 2015-11-03

PA6 Martin Dahlberg Added descriptions of sa.events and sa.conf.callbacks 2016-01-21

PA7 Staffan Gribel Modified cbSelectSort 2016-02-11

PA8 Per Andersson Added callback cbLabelObject. 2016-02-16

PA9 Staffan Gribel Added function sa.tableMatchRow 2016-02-23

PA10 Martin Dahlberg Updated information in chapter 5 2016-03-01

PA11 Staffan Gribel Created chapter 6 TH2 migration 2016-03-01

PA12 Lars-Åke Berg Updated sa.events.init override example. 2016-03-10

PA13 Staffan Gribel Reworked the entire spec. Added Pfs. 2016-04-10

PA14 Martin Dahlberg Added descriptions of sa.scannerMatch, sa.keyboardMatch,

sa.keyboard and updated sa.input, sa.select with the new

additional return value

2016-04-13

PA15 Staffan Gribel Updated Object movement and customization

Added sa.menuBase and _return callback

2016-04-14

PA16 Staffan Gribel Uppdated according to Peter Ekbergs request

Added context sensitive side menu _f1

2016-05

PA17 Staffan Gribel Added sa.tableMatchRows and sa.makeRow 2016-10-17

PA18 Staffan Gribel Group of Labels in cbBatchDone 2017-03-08

PA19 Peter Ekberg

Magnus Wibeck

Added anchor points.

Minor language and formatting corrections.

2017-06-07

PA20 Staffan Gribel Rows and Formats are reserved names 2017-08-28

PA21 Staffan Gribel sa.displayHTML function

Bookmarks for callbacks and other

2017-11-16

PA22 Martin Dahlberg Added new features to sa.quantity() 2017-11-22

PA23 Martin Dahlberg Updated the sa.quantity() description 2017-11-28

PA24 Staffan Gribel Bookmarked displayHTML 2017-12-03

PA25 Lars Persson Added callback cbAtExit. 2017-12-22

Document

Lua Standard Application API CLxNX STL00249PB1
Programming Manual Page 49

PB1 Martin Dahlberg Added sa.initUTC() 2018-04-19

Extensive contact information of worldwide SATO

operations can be found on the Internet at

www.satoworldwide.com

